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Abstract

Purpose – The purpose of this paper is to study the unsteady boundary layer flow of a micropolar
fluid past a circular cylinder which is started impulsively from rest.

Design/methodology/approach – The nonlinear partial differential equations consisting of three
independent variables are solved numerically using the 3D Keller-box method.

Findings – Numerical solutions for the velocity profiles, wall skin friction and microrotation profiles
are obtained and presented for various values of time t and material parameter K with the boundary
condition for microrotation n ¼ 0 (strong concentration of microelements) and n ¼ 1/2 (weak
concentration of microelements). The results are presented along the points on the cylinder surface,
starting from the forward to the rear stagnation point, for small time up to the time when the boundary
layer flow separates from the cylinder.

Originality/value – It is believed that this is the first paper that uses the 3D Keller-box method to
study the unsteady boundary layer flow of micropolar fluids. In the last four decades, there has been
overhelming interest shown by researchers in micropolar fluids and still many problems are unsolved.
The paper shows not only the fundamental importance of this problem, but also the implications for
situations of practical interest.
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Nomenclature
a ¼ radius of the cylinder
Cf ¼ skin friction coefficient
j ¼ microinertia density
K ¼ material parameter
n ¼ ratio of the microrotation vector

component and the fluid skin friction
at the wall

N ¼ non-dimensional component of the
microrotation vector normal to x-y plane

Re ¼ Reynolds number
t ¼ non-dimensional time
u, v ¼ non-dimensional velocity components

along x- and y-axes
ue(x) ¼ non-dimensional external velocity
U1 ¼ reference velocity
x, y ¼ non-dimensional Cartesian coordinates

along the surface of the cylinder and
normal to it, respectively
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Greek symbols
g ¼ spin gradient viscosity
h ¼ semi-similarity variable
k ¼ vortex viscosity
m ¼ dynamic viscosity
n ¼ kinematic viscosity
r ¼ density

�tw ¼ wall skin friction
c ¼ non-dimensional stream function at the

plate

Subscripts
w ¼ wall condition
1 ¼ far field condition

Introduction
Unsteady flows have become important in recent years as both a distinct category of fluid
mechanics and an area of convective heat and mass transfer. Studies of such flows have
been carried out for numerous geometries and under various boundary conditions and
fluid properties. Historically these analyses were performed on a boundary-layer basis and
mostly addressed applications involving external transport of a steady-state nature.
However, some problem areas which are uniquely of a classical boundary-layer nature and
which are important in applications, as well as in theory, still persist. An important feature
of these flows is that they can be self-similar, sometimes they are non-similar and
sometimes they are even of a non-boundary-layer type. Clearly, the introduction of time in
the unsteady problem as the extra independent variable increases the complexity of the
solution procedure. It is worth mentioning to this end that unsteady forced convection
viscous flows were first studied by Stokes (1851) and Rayleigh (1911) and this was long
before Prandtl (1905) laid the foundation of the boundary-layer theory. The unsteady
nature of a wide range of fluid flows of practical importance has received considerable new
attention in recent years. Comprehensive literature reviews on unsteady boundary layers
can be found in the review papers by Riley (1975, 1990), Tani (1977), McCroskey (1977) and
Telionis (1979), and in the book by Telionis (1981).

Studies of micropolar fluids have recently received considerable attention due to their
application in a number of processes that occur in industry. Such applications include:
extrusion of polymer fluids, solidification of liquid crystals, cooling of a metallic plate in a
bath, animal bloods, exotic lubricants and colloidal and suspension solutions, for example,
for which the classical Navier-Stokes theory is inadequate. In this theory, rigid particles
contained in a small fluid volume element are limited to rotation about the center of the
volume element described by the micro-rotation vector. Here, the laws of classical
continuum mechanics are augmented with additional equations that account for the
conservation of micro-inertia moments and the balance of first stress moments that arise
due to consideration of the microstructure in a material, and also additional local
constitutive parameters are introduced. Physically, micropolar fluids may be described as
the non-Newtonian fluids consisting of dumb-bell molecules or short rigid cylindrical
elements, polymer fluids, fluid suspensions, animal blood, etc. The presence of dust or
smoke, particularly in a gas, may also be modeled using micropolar fluid dynamics.

The theory of micropolar fluids, has been first proposed by Eringen (1966, 1972). The
key points to note in the development of Eringen’s microcontinuum mechanics are the
introduction of new kinematic variables, e.g. the gyration tensor and microinertia moment
tensor. However, a serious difficulty is encountered when this theory is applied to real,
nontrivial flow problems; even for the linear theory, a problem dealing with simple
micro fluids must be formulated in terms of a system of 19 partial differential equations
in nineteen unknowns and the underlying mathematical problem is not easily amenable
to solution. These special features for micropolar fluids were discussed in two
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comprehensive review paper of the subject and application of micropolar fluid mechanics
by Ariman et al. (1973, 1974) and in the books by Łukaszewicz (1999) and Eringen (2001).

The classical problem of unsteady boundary layer flow of a viscous and
incompressible fluid past a circular cylinder has been considered by many authors,
such as, Wang (1967, 1968), Collins and Dennis (1973a, b), Bar-Lev and Yang (1975),
Katagiri (1976), Patel (1976), Cebeci (1979, 1986), Ingham (1984) and Nam (1990). Cebeci
(1979) used the two-point Keller-box with zigzag differencing in dealing with the flow
reversal. The two-point Keller-box with characteristic box scheme was used by Cebeci
(1986). In both of these papers by Cebeci (1979, 1986), the two-point Keller-box
differencing scheme which we call the 3D Keller box scheme was used for the problem
without flow reversal. The generalized differential quadrature in combination with the
generalized integral quadrature (GDQ-GIQ) approach has been used by Shu et al. (1996)
to study the unsteady boundary layer flows past an impulsively started circular
cylinder and it was shown that the numerical instability breaks down the calculation at
t ¼ 3.0. From the numerical results, they concluded that there is a finite time
singularity in the solution of the unsteady boundary layer equation.

In micropolar fluids, the research on steady boundary layer flow past a cylinder has
received considerable attention. Nath (1976) considered the steady problem around a
cylinder and a sphere in micropolar fluids. The solutions were obtained using an implicit
finite difference. He found that in micropolar fluid, the separation occurs at earlier
streamwise location as compared to Newtonian fluids. The microrotation parameter does
not give much effect to the skin friction and velocity profiles but it gives effect to the
microrotation profiles and microrotation gradient. Hassanien et al. (1996) considered a
steady boundary layer flow at an axisymmetric stagnation point on infinite circular
cylinder. They developed a numerical procedure based on Chebyshev polynomials and
found that micropolar fluids display a reduction in drag compared to those for Newtonian
fluid. The wall shear and couple stresses increases with the increasing values of the
material parameter.

The unsteady boundary layer flow of a micropolar fluid near the forward and rear
stagnation point of a cylindrical surface which is impulsively started from rest was
studied by Lok et al. (2003c). They considered the problem for both near the forward and
rear stagnation point. Their numerical results for the transient solution were obtained by
implementing the 2D Keller-box method. They found that the skin friction coefficient
increases as the values of the material parameter K increase. Near the forward stagnation
point, the velocity and microrotation profiles attain the steady flow case as time
progresses. Near the rear stagnation point, the separation occurs at the same value of time t
for any value ofKwhen the parameter n takes the value n ¼ 1/2. In a next paper, Lok et al.
(2003a) have studied the problem of steady two-dimensional asymmetric stagnation point
flow of a micropolar fluid. More recently, Kamal and Siddiqui (2004) studied the unsteady
flow around a rotating and oscillating circular cylinder in a micropolar fluid. It was found
that when there is no rotation of circular cylinder, the separation in the spin was observed
but this separation dissolves when the rotation is imposed.

The aim of this paper is to study the problem of unsteady boundary layer flow past
a circular cylinder placed in a micropolar fluid by using the implicit 3D Keller-box
method as described by Cebeci (1979, 1986). The flow is driven by the impulsive motion
of the cylinder from rest. Numerical results are presented for the transient (small time)
solution up to the separation point along the cylinder surface including the
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stagnation point. The formulation of the problem is discussed in second section.
Numerical solutions in the form of velocity profiles, microrotation profiles, wall shear
stress and skin frictions are discussed in the third section. To our best knowledge, this
problem has not been studied before and it would be of great value to applied
mathematicians and engineers working in the area of micropolar fluids. During recent
years, the subject on unsteady boundary layer flow of micropolar fluids has received a
considerable stimulus and, we have also quoted here some of the classical review
papers on the unsteady boundary layer flow of viscous and incompressible fluids
(Newtonian fluids).

Problem formulation
We consider the unsteady two-dimensional boundary layer flow of a viscous and
incompressible micropolar fluid past a circular cylinder of radius a, which at time �t ¼ 0
is started impulsively from rest with the velocity �ueð�xÞ of the inviscid (potential) fluid,
the flow being perpendicular to the axis of the cylinder. This problem is modeled in a
rectangular Cartesian coordinate ð�x; �yÞ, where �x is the coordinate measured along the
surface of the cylinder started from its forward stagnation point ð�x ¼ 0Þ and �y is the
coordinate measured in the normal direction to the wall, respectively. The boundary
layer equations governing the unsteady boundary layer flow of micropolar fluid are:

›�u

›�x
þ

›�v

›�y
¼ 0 ð1Þ

›�u

›�t
þ �u

›�u

›�x
þ �v

›�u

›�y
¼ �ue

d�ue

d�x
þ

mþ k

r

� �
›2 �u

›�y 2
þ

k

r

› �N

›�y
ð2Þ

rj
› �N

›�t
þ �u

› �N

›�x
þ �v

› �N

›�y

� �
¼ g

›2 �N

›�y 2
2 k 2 �Nþ

›�u

›�y

� �
ð3Þ

where �u and �v are the velocity component in the �x and �y directions, �N is the component
of the microrotation vector normal to the �x2 �y plane, r is the density, k is the vortex
viscosity, g is the spin-gradient viscosity and j is the microinertia density. Equations
(1)-(3) are subject to the initial and boundary conditions:

�t , 0 : �u ¼ �v ¼ �N ¼ 0 for any x; y

�t $ 0 : �u ¼ �v ¼ 0; �N ¼ 2n ›�u
›�y

at �y ¼ 0

�u ¼ �ueð�xÞ; �N ¼ 0 as �y!1

ð4Þ

where n is a constant such that 0 # n # 1. It should be mentioned that the case n ¼ 0,
called strong concentration by Guram and Smith (1980), indicating N ¼ 0 near the wall,
represents concentrated particle flows in which the microelements close to the wall surface
are unable to rotate (Jena and Mathur, 1981). The case n ¼ 1/2 indicates the vanishing of
anti-symmetrical part of the stress tensor and denotes weak concentration (Ahmadi, 1976).
The case n ¼ 1 is used for the modeling of turbulent boundary layer flows.

We introduce now the following non-dimensional variables:

x ¼ �x=a; y ¼ Re 1=2ð�y=aÞ; t ¼ ðU1=aÞ�t; u ¼ �u=U1

v ¼ Re 1=2ð�v=U1Þ; N ¼ ða=U1ÞRe
21=2 �N; ueðxÞ ¼ �ueð�xÞ=U1

ð5Þ
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where Re ¼ U1a=y is the Reynolds number and y is the kinematic viscosity of the
fluid. We assume that the spin-gradient viscosity g has the form:

g ¼ ðmþ k=2Þj ð6Þ

which is invoked to allow the field equations of micropolar fluids predict the correct
behavior in the limiting case when microstructure effects become negligible and the
total spin �N reduces to the angular velocity. The derivation of equation (6) has been
given by Ahmadi (1976) and Kline (1977). It has been used by many authors in their
papers on micropolar boundary layer flow problems, such as Gorla (1988), Yücel (1989),
Rees and Bassom (1996), etc. Substituting equation (5) into equations (1)-(3) and using
equation (6), we obtain the following non-dimensional form of these equations:

›u

›x
þ

›v

›y
¼ 0 ð7Þ

›u

›t
þ u

›u

›x
þ v

›u

›y
¼ ue

due

dx
þ ð1 þ KÞ

›2u

›y 2
þ K

›N

›y
ð8Þ

›N

›t
þ u

›N

›x
þ v

›N

›y
¼ ð1 þ K=2Þ

›2N

›y 2
2 K 2N þ

›u

›y

� �
ð9Þ

where K ¼ k/m is the micropolar (material) parameter and we have taken j ¼ ay=u1.
The initial and boundary condition (4) also become:

t , 0 : u ¼ v ¼ N ¼ 0 for any x; y

t $ 0 : u ¼ v ¼ 0; N ¼ 2n ›u
›y

at y ¼ 0

u ¼ ueðxÞ; N ¼ 0 as y!1

ð10Þ

We introduce now the following non-similarity variables:

c ¼ t 1=2ueðxÞf ðx;h; tÞ; N ¼ t21=2ueðxÞgðx;h; tÞ; h ¼ y=t 1=2 ð11Þ

where c is the stream function defined as u ¼ ›c=›y and v ¼ 2›c=›x. Using
equations (11), (8) and (9) can be written as:

ð1þKÞf 000 þ
h

2
f 00 þ t

due

dx
½12 ð f 0Þ2 þ ff 00� þKg 0 ¼ t

›f 0

›t
þ ue f 0

›f 0

›x
2 f 00

›f

›x

� �� �
ð12Þ

1þ
K

2

� �
gþ

h

2
g 0þ

1

2
gþt

due

dx
ð fg 02f 0gÞ¼t

›g

›t
þue f 0

›g

›x
2g 0›f

›x

� �
þKð2gþf 00Þ

� �
ð13Þ

subject to the boundary conditions:

f ¼ f 0 ¼ 0; g ¼ 2nf 00 ath ¼ 0

f 0 ¼ 1; g ¼ 0 ath ¼ h1
ð14Þ

where h1 denotes the value of h at the edge of the boundary layer and primes denote
partial differentiation with respect to h.
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Following Cebeci (1979), we assume in this paper that ue(x) has the form:

ueðxÞ ¼
1

p
sinðpxÞ ð15Þ

Thus, at the forward stagnation point (x ¼ 0), ue(x) and due/dx so that equations (12)
and (13) reduce to:

ð1 þ KÞf 000 þ
h

2
f 00 þ Kg 00 þ t½1 2 ð f 0Þ2 þ ff 00� ¼ t

›f 0

›t
ð16Þ

ð1 þ K=2Þg 00 þ
h

2
g 0 þ

1

2
g þ tð fg 00 2 f 0gÞ ¼ t

›g

›t
þ Kð2g þ f 00Þ

� �
ð17Þ

On the other hand, at the rear stagnation point (x ¼ 1), ue(x) and due/dx ¼ 21.
Equations (12) and (13) reduces now to:

ð1 þ KÞf 000 þ
h

2
f 00 þ Kg 00 2 t½1 2 ð f 0Þ2 þ ff 00� ¼ t

›f 0

›t
ð18Þ

ð1 þ K=2Þg 00 þ
h

2
g 0 þ

1

2
g 2 tð fg 00 2 f 0gÞ ¼ t

›g

›t
þ Kð2g þ f 00Þ

� �
ð19Þ

In general, equations (16)-(19) can be written as:

ð1 þ KÞf 000 þ
h

2
f 00 þ Kg 00 þ tl½1 2 ð f 0Þ2 þ ff 00� ¼ t

›f 0

›t
ð20Þ

ð1 þ K=2Þg 00 þ
h

2
g 0 þ

1

2
g þ tlð fg 00 2 f 0gÞ ¼ t

›g

›t
þ Kð2g þ f 00Þ

� �
ð21Þ

where l ¼ 1 for x ¼ 0 and l ¼ 21 for x ¼ 1. The boundary conditions of equations
(20) and (21) are given by equation (14).

For the case n ¼ 1/2, we may take:

g ¼ 2
1

2
f 00 ð22Þ

and equations (12) and (13) reduce to:

ð1 þ K=2Þf 000 þ
h

2
f 00 þ t

due

dx
ð1 2 f 02 þ ff 00Þ ¼ t

›f 0

›t
þ ue f 0

›f 0

›x
2 f 00

›f

›x

� �� �
ð23Þ

subject to the boundary conditions:

f ¼ f 0 ¼ 0 ath ¼ 0; f 0 ¼ 1 ash!1 ð24Þ

If we take:

f̂ðx; ĥ; tÞ ¼ ð1 þ K=2Þ21=2f ðx;h; tÞ; ĥ ¼ ð1 þ K=2Þ21=2h ð25Þ

Equation (23) reduces to:

f̂ 000 þ
ĥ

2
f̂ 00 þ t

due

dx
ð1 2 f̂ 02 þ f̂f̂ 00Þ ¼ t

›f̂ 0

›t
þ ue f̂ 0

›f̂ 0

›x
2 f̂ 00

›f̂

›x

 !" #
ð26Þ
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and the boundary condition (24) becomes:

f̂ ¼ f̂ 0 ¼ 0 at ĥ ¼ 0; f̂ 0 ¼ 1 as ĥ!1 ð27Þ

It should be noticed that equations (26) and (27) are identical with equations (7) and (8)
from the paper by Cebeci (1979) for the unsteady boundary layer flow of a viscous and
incompressible (Newtonian) fluid past a circular cylinder which is started impulsively
from rest. The solution of equation (26) subjected to equation (27) at the initial time
t ¼ 0 is given by equation (13) in the paper by Cebeci (1979). Thus, the solution of
equation (23) subjected to equation (24) at the initial time t ¼ 0 can be expressed as:

f 00ðhÞ ¼ 1þK=2
p

� �1=2

exp 2
h 2

4 ð1 þ K=2Þ
h i

f 0ðhÞ ¼ erf h
2 ð1 þ K=2Þ1=2
� �

f ðhÞ ¼ h erf h
2 ð1 þ K=2Þ1=2
� �

2 2
½pð1þK=2Þ�1=2 1 2 exp 2

ð1þK=2Þh 2

4

� �h i
gðhÞ ¼ 2 1

2
1þK=2

p

� �1=2
exp 2

h 2

4 ð1 þ K=2Þ
h i

ð28Þ

The quantity of physical interest in this problem is the local skin friction coefficient Cf,
which is defined as, see Cebeci (1979):

Cf ¼
ða=y ÞRe21=2 �tw

ð1=2Þru2
1

ð29Þ

where �tw is the wall skin friction given by:

�tw ¼ ðmþ kÞ
›�u

›�y
þ k �N

� �
�y¼0

¼ ½1 þ ð1 2 nÞK�ðmU1Re
1=2=aÞ

›u

›y

� �
y¼0

ð30Þ

Substituting equation (5) into equation (29), we get:

Cf ¼
2½1 þ ð1 2 nÞK�ueðxÞ

u1

f 00ðx; 0; tÞffiffi
t

p ð31Þ

where the reference velocity u1 is taken 1/p and ue(x) is given by equation (15). At the
forward stagnation point, we have ueðxÞ ¼ ð1=pÞsinðpxÞ < x and the skin friction
coefficient can be expresses as, see Lok et al. (2003a):

Cf ¼
½1 þ ð1 2 nÞK�ffiffi

t
p f 00ðx; 0; tÞ ð32Þ

Numerical procedure
Equations (12) and (13) are first written in terms of a first-order system of partial
differential equations. In order to eliminate all higher-order derivatives, new dependent
variables uðx;h; tÞ, vðx;h; tÞ and pðx;h; tÞ are introduced such that:
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f 0 ¼ u

u0 ¼ v

g 0 ¼ p

ð33Þ

Here, u and v are new variables that are not related to the flow components in
equations (7)-(9). Thus, equations (12) and (13) become:

ð1 þ KÞv0 þ
h

2
vþ t

due

dx
ð1 2 u 2 þ fvÞ þ Kp ¼ t

›u

›t
þ ue u

›u

›x
2 v

›f

›x

� �� �
ð34Þ

1þ
K

2

� �
p0 þ

h

2
pþ

g

2
þ t

due

dx
ð fp2 ugÞ ¼ t

›g

›t
þ ue u

›g

›x
2 p

›f

›x

� �
þKð2gþ vÞ

� �
ð35Þ

From equations (20) and (21), the first-order partial differential equations at the
stagnation points are as follow:

ð1 þ KÞv0 þ
h

2
vþ tlð1 2 u 2 þ fvÞ þ Kp ¼ t

›u

›t
ð36Þ

1 þ
K

2

� �
p0 þ

h

2
pþ

g

2
þ tlð fp2 ugÞ ¼ t

›g

›t
þ tKð2g þ vÞ ð37Þ

Consider the net cube as in Figure 1. The net points are denoted by:

x0 ¼ 0; xi ¼ xi21 þ ri; i ¼ 1; 2; . . . ; I

t0 ¼ 0; tn ¼ tn21 þ kn; n ¼ 1; 2; . . . ;N

h0 ¼ 0; hj ¼ hj21 þ hj; j ¼ 1; 2; . . . ; J

ð38Þ

where ri is the Dx-spacing, kn is the Dt-spacing and hj is the Dh-spacing.
We approximate the quantities ( f, u, v) at points (xi, tn, hj) by the net functions

denoted by f inj ; u
in
j ; v

in
j . Equations (33) are approximated for the midpoint xi, tn, hj21/2

using the centered-difference derivatives. Thus, we have:

Figure 1.
Net cube for difference

approximations

A1

A2

A3

A4

B1

B2

B3

B4
C

x

t

xi–1 xi

tn–1

tn

hj–1

h

hj

(xi, tn, hj–1/2)
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1
hj

f i;nj 2 f i;nj21

� �
¼ ui;n

j21=2

1
hj

ui;nj 2 ui;nj21

� �
¼ vi;n

j21=2

1
hj

gi;nj 2 gi;nj21

� �
¼ pi;nj21=2

ð39Þ

We next write the finite-difference approximations of equations (34) and (35) at the
midpoint xi21/2, tn21/2, hj21/2 which is an approximation of the function at the center of
the three-dimensional box, C. This gives:

ð1þKÞ

hj
vi;nj 2vi;nj21

� �
þ

1

2
hj21=2v

i;n
j21=2þt n21=2 due

dx

� �i21=2

ð fvÞi;nj21=22ðu 2Þ
i;n

j21=2

h i

2Kpj21=222bnu
i;n
j21=22

1

2
ai ui;n

j21=2

� �2

þðm1þm6Þu
i;n
j21=2

�

2vi;n
j21=2f

i;n
j21=22m3f

i;n
j21=22m4v

i;n
j21=2

i
¼m7

ð40Þ

ð1þK=2Þ

hj
vi;nj 2vi;nj21

� �
þ

1

2
hj21=2p

i;n
j21=2þ

1

2
gi;nj21=2þ t n21=2 due

dx

� �i21=2

� ð fpÞi;n
j21=22ðugÞi;n

j21=2

h i
22bng

i;n
j21=22

1

2
ai ui;n

j21=2g
i;n
j21=2þm10u

i;n
j21=2

�
þm1g

i;n
j21=22pi;n

j21=2f
i;n
j21=22m4p

i;n
j21=22m9f Þ¼m11

ð41Þ

where:

m1 ¼ u234
j21=2;

m2 ¼ ui21;n
j21=2 2 2�un21;

m3 ¼ v234
j21=2;

m4 ¼ f i;n21
j21=2 2 2�fi21;

m5 ¼ ðu 2Þ
234

j21=2;

m6 ¼ ui;n21
j21=2 2 2�ui21

m7 ¼ 2
ð1 þ KÞ

hj
v234
j 2 v234

j21

� �
2

1

2
hj21=2m3 2 t n21=2 due

dx

� �i21=2

� 4 2m5 þ ð fvÞ234
j21=2

h i
þ Kp234

j21=2 þ 2bnm2 þ
1

2
aiðm1m6m3m4Þ

m8 ¼ gi21;n
j21=2 2 2�gn21;

m9 ¼ p234
j21=2;

m10 ¼ gi;n21
j21=2 2 gi21;n

j21=2 2 gi21;n21
j21=2

ð42Þ
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m11 ¼ 2
ð1 þ K=2Þ

hj
v234
j 2 v234

j21

� �
2

1

2
hj21=2m9

2
1

2
g234
j 2 t n21=2 due

dx

� �i21=2

ð fpÞ234
j21=2 2 ðugÞ234

j21=2

h i

þ 2bnm8 þ
1

2
aiðm1m10 2m9m4Þ þ t n21=2K 2g234

j21=2 þm3

� �
and ðÞ234

j ¼ ðÞ
i21;n
j þ ðÞ

i21;n21
j þ ðÞ

i;n21
j .

The equations at the stagnation points contain only two dependent variables h
and t since x is fixed at x ¼ 0 for the forward point and x ¼ 1 for the rear point.
The partial differential equations (36) and (37) are approximated about the midpoint
(xi, tn21/2, hj21/2) of the rectangle B1B2B3B4 which gives:

ð1 þ KÞ

hj
vi;nj 2 vi;nj21

� �
þ

1

2
hj21=2v

i;n
j21=2 þ t n21=2l

� 1 2 ðu 2Þ
i;n

j21=2 þ ð fvÞi;n
j21=2

h i
þ Kpi;n

j21=2 2 2bnu
i;n
j21=2

¼ 2
ð1 þ KÞ

hj
ðvj 2 vj21Þ2

1

2
hj21=2vj21=2




2l̂ 1 2 ðu 2Þj21=2 þ ð fvÞj21=2

� �
2 Kpj21=2 2 2bnuj21=2

�n21

ð43Þ

ð1 þ K=2Þ

hj
pi;nj 2 pi;nj21

� �
þ

1

2
hj21=2p

i;n
j21=2 þ

1

2
gi;n
j21=2 þ t n21=2l

� ð fpÞi;n
j21=2 2 ðugÞi;n

j21=2

h i
2 2bng

i;n
j21=2 2 t n21=2K 2gi;n

j21=2 þ vi;n
j21=2

� �
¼ 2

ð1 þ K=2Þ

hj
pj 2 pj21

� 

2

1

2
hj21=2pj21=2 2

1

2
gj21=2




2l̂ ð fpÞj21=2 2 ðugÞj21=2

� �
2 2bngj21=2 þ t n21=2Kð2gj21=2 þ vj21=2Þ

on21

ð44Þ

where l̂ ¼ t n21=2l. Also, the boundary condition (10) become:

f 0 ¼ 0; u0 ¼ 0; g0 ¼ 2nv0; uJ ¼ 1; gJ ¼ 0 ð45Þ

equations (39)-(41), (43) and (44) are nonlinear algebraic equations and the linearization of
these equations is carried out using Newton’s method. The right hand side of equations
(40), (41), (43) and (44) involve only known quantities if we assume that the solution is
known at x ¼ x i21 and t ¼ n n21y. Further, we introduce the following iterates:

bf ðkÞj ; uðkÞj ; vðkÞj ; gðkÞj ; pðkÞj c; k ¼ 0; 1; 2; . . .

f ðkþ1Þ
j ¼ f ðkÞj þ df ðkÞj ; uðkþ1Þ

j ¼ uðkÞj þ duðkÞj ; vðkþ1Þ
j ¼ vðkÞj þ dvðkÞj ;

gðkþ1Þ
j ¼ gðkÞj þ dgðkÞj ; pðkþ1Þ

j ¼ pðkÞj þ dpðkÞj

ð46Þ

The above expressions are substituted into the nonlinear system of equations (39)-(41), (43)
and (44), and by dropping the terms that are quadratic in df ðkÞj ; duðkÞj ; dvðkÞj ; dgðkÞj and dpðkÞj ;
we obtain a linear tridiagonal system of equations.
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In a vector-matrix form, it can be written as:

Ad ¼ r ð47Þ

This tridiagonal matrix can be solved using the block elimination method. These
calculations are repeated until the convergence criterion based on the skin friction
parameter is satisfied, that is jdf 00ðx; 0; tÞ , 11j where 11 is a small prescribed value.
The numerical solution is obtained at some positions x around the cylinder starting
from the forward stagnation point x ¼ x0 ¼ 0 and for some values of time t and the
micropolar parameter K. All the calculations were done for n ¼ 0 (strong
concentration) and n ¼ 1/2 (weak concentration). We have chosen a step size in t of
0.01, x of 0.025 and h of 0.05, h1 ¼ 10 and the convergence criteria is 11 ¼ 1026.
The calculation begins at the initial time t ¼ 0 and is progressing until the steady
state-flow is reached ðt !1Þ. Using the initial condition at t ¼ 0 as in equation (28), we
solve equations (20) and (21) with l ¼ 1 (forward stagnation point, x ¼ 0) until the
convergence criterion is realized. Then, we march to the next x-station, x ¼ x1 up to
x ¼ xn21 and equations (12) and (13) are solved using the initial condition at t ¼ 0
along with the solution obtained at the previous x-station. Note that the convergence
criteria is checked at each x-station. For the solution at the rear stagnation point, xn, the
same procedure is applied and equations (20) and (21) are solved by choosing l ¼ 21.
After the converged solutions at all x-stations are obtained, we then march to the next
t-station. The solutions at the current t-station can be found using the converged
solutions at the previous t-station and the same procedure as explained above is
applied by marching from x0 up to xn.

Results and discussion
Values of the skin friction coefficient Cf at the forward stagnation point (x ¼ 0), given
by equation (32), are given in Table I for some values of time t and material parameter
K when n ¼ 0 (strong concentration). The values obtained by Cebeci (1979) for K ¼ 0
(Newtonian fluid) and Lok et al. (2003c) for K ¼ 0, 0.5, 1, 1.5, 2 and 3 are also included in
this table. It is seen that for a fixed value of t, Cf increases with the increase:

F 00
w ¼

1

ue

›u

›y

� �
w

ð48Þ

of K and it decreases to its steady-state value when t increases and K is fixed. Further,
Table II shows the values of the wall skin friction, F 00

w, given by equation (48), for some
values of t and K when n ¼ 1/2 (weak concentration). Again, the values reported by
Cebeci (1979) for K ¼ 0 (Newtonian fluid) and Lok et al. (2003b) for K ¼ 0, 0.5, 1, 1.5,
2 and 3 are included in this table. It is observed that for all values of K considered, the
numerical values of F 00

w are in excellent agreement with those reported by Cebeci (1979)
and Lok et al. (2003b). The numerical values indicate that increasing K results in a
decrease in the values of F 00

w when t is held fixed. This is because as K increases, the
thickness of the velocity boundary becomes larger and thus it gives rise to a reduction
of F 00

w. It is also seen that the numerical solution approaches monotonically, for all
values of K considered, the steady-state value of F 00

w. However, the steady-state values
of F 00

w are lower for the greater values of K. Results of Table II are also shown in
Figure 2, which displays the variation of F 00

w with t at the forward stagnation point
(x ¼ 0) for some values of K when n ¼ 1/2. The values reported by Cebeci (1979) for
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a Newtonian fluid (K ¼ 0) are also included in this figure. We notice again that for a
Newtonian fluid (K ¼ 0) an excellent agreement exists between the present results and
those reported by Cebeci (1979). This figure also shows that at t increases, F 00

w tends
monotonically to the steady-state values.

The variation of the skin friction coefficient Cf with t near the rear stagnation point
(x ¼ 1) of the cylinder is shown in Figures 3 and 4 for n ¼ 0 and 1/2, respectively.
The results obtained by Lok et al. (2003b) have also been included in Figure 4, which
show a very good agreement with the present results. The point of the boundary layer
separation x ¼ xs is found at t ¼ ts ¼ 0:6438; 0:6096; 0:5803 and 0:5644 for n ¼ 0
with K ¼ 0, 1, 2 and 3, respectively. Also, t ¼ ts ¼ 0:6438 for n ¼ 1/2 and all values of
K considered. We notice that the values of Cf for the micropolar fluid (K – 0) are

T K ¼ 0 K ¼ 0.5 K ¼ 1.0 K ¼ 1.5 K ¼ 2.0 K ¼ 3.0

0.01 5.722594 7.005407 8.081295 9.024262 9.872381 11.366978
5.722541 7.005393 8.081298 9.024277 9.872415 11.367033

0.04 2.980922 3.6446073 4.193333 4.667595 5.088453 5.816257
2.980900 3.644602 4.193344 4.667630 5.088528 5.816459

0.09 2.118524 2.585566 2.964030 3.285159 3.565468 4.040375
2.118525 2.585574 2.964048 3.285196 3.565534 4.040536

0.16 1.724063 2.099876 2.397875 2.646304 2.860266 3.218375
1.724086 2.099899 2.397902 2.646343 2.860326 3.218494

0.25 1.514670 1.841165 2.095033 2.303997 2.482818 2.782084
1.514717 1.841204 2.095072 2.304041 2.482873 2.782167

0.36 1.395589 1.693421 1.921517 2.108099 2.267849 2.537340
1.395665 1.693483 1.921572 2.108153 2.267904 2.537399

0.49 1.325873 1.606516 1.819292 1.993209 2.142784 2.397505
1.325986 1.606606 1.819369 1.993277 2.142847 2.397559

0.64 1.284858 1.555125 1.758892 1.925844 2.070179 2.317669
1.285016 1.555251 1.758997 1.925934 2.070259 2.317732

0.81 1.261001 1.525080 1.723710 1.887000 2.028739 2.272650
1.261216 1.525250 1.723851 1.887120 2.028845 2.272734

1 1.247448 1.507930 1.703764 1.865228 2.005720 2.247802
1.247727 1.508152 1.703948 1.865386 2.005860 2.247917

1.21 1.239991 1.498462 1.692863 1.853469 1.993371 2.234487
1.240346 1.498744 1.693098 1.853672 1.993552 2.234639

1.44 1.236042 1.493442 1.687160 1.847385 1.987008 2.227611
1.236482 1.493793 1.687454 1.847640 1.987237 2.227804

1.69 1.234031 1.490897 1.684317 1.844381 1.983873 2.224207
1.234565 1.491323 1.684675 1.844694 1.984154 2.224446

1.96 1.233040 1.489659 1.682964 1.842965 1.982396 2.222598
1.233677 1.490169 1.683393 1.843341 1.982734 2.222886

2.25 1.232556 1.489075 1.682343 1.842322 1.981726 2.221869
1.233304 1.489674 1.682849 1.842765 1.982126 2.222211

2.56 1.232309 1.488795 1.682059 1.842033 1.981428 2.221554
1.233176 1.489490 1.682646 1.842549 1.981893 2.221946

2.89 1.232163 1.488648 1.681919 1.841895 1.981290 2.221404
1.233157 1.489446 1.682593 1.842488 1.981824 2.221861

Steady 1.23259 1.488986 1.682170 1.842086 1.981438 2.221496
1.232627

Sources: Cebeci (1979) and Lok et al. (2003c)

Table I.
Values of the skin friction

coefficient Cf as a
function of t at the

forward stagnation point
(x ¼ 0) for various values
of K when n ¼ 0 (strong

concentration)
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higher compared to that for the Newtonian fluid (K ¼ 0). From these results it
can be, therefore, concluded that the developed code for the present 3D unsteady
boundary layer can be used with great confidence to study the problem discussed in
this paper.

Figures 5-12 show the velocity profiles f0 and microrotation profiles 2g at both the
forward stagnation point (x ¼ 0) and rear stagnation point (x ¼ 1) for different values
of time t when K ¼ 0 (Newtonian fluid) and K ¼ 2 for n ¼ 0 and n ¼ 1/2, respectively.
The results for unsteady flows reported by Lok et al. (2003c) have also been included in
Figure 5, while the results for the steady-state case are included in Figures 5 and 6
show an excellent agreement with the present results. It is seen that as the time
progresses, the velocity profiles at the forward stagnation point approach the

t K ¼ 0 K ¼ 0.5 K ¼ 1.0 K ¼ 1.5 K ¼ 2.0 K ¼ 3.0

0.01 5.722594 5.118331 4.67232 4.325689 4.046285 3.61909
5.722541

0.04 2.980922 2.66616 2.433831 2.25327 2.107727 1.885197
2.980900

0.09 2.118524 1.894824 1.729711 1.601388 1.497951 1.339795
2.118525

0.16 1.724063 1.542016 1.407648 1.303218 1.219041 1.090331
1.724086

0.25 1.51467 1.354735 1.236687 1.144942 1.070989 0.957911
1.514717

0.36 1.395589 1.248229 1.139464 1.054932 0.986794 0.882606
1.395665

0.49 1.325873 1.185878 1.082548 1.00224 0.940242 0.838525
1.325986

0.64 1.284858 1.149196 1.049065 0.971243 0.908513 0.812595
1.285016

0.81 1.261001 1.127863 1.029594 0.953219 0.891655 0.797519
1.261216

1 1.247448 1.115745 1.018534 0.942984 0.882083 0.788961
1.247727

1.21 1.239991 1.109081 1.012455 0.93736 0.876825 0.784262
1.240346

1.44 1.236042 1.105661 1.009241 0.934388 0.874048 0.781782
1.236482

1.69 1.234031 1.103812 1.007611 0.932884 0.87276 0.78053
1.234565

1.96 1.23304 1.102885 1.006815 0.932152 0.871962 0.779925
1.233677

2.25 1.232556 1.102461 1.006435 0.931804 0.871641 0.779643
1.233304

2.56 1.232309 1.102249 1.006249 0.931637 0.871489 0.779511
1.233176

2.89 1.232163 1.102128 1.006147 0.931548 0.87141 0.779446
1.233157

Steady 1.23259 1.102488 1.006425 0.931766 0.871585 0.779567
1.232627

Sources: Cebeci (1979) and Lok et al. (2003b)

Table II.
Values of the skin friction
coefficient F 00

w as a
function of t at the
forward stagnation point
(x ¼ 0) for various values
of K when n ¼ 1/2 (weak
concentration)
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steady-state solution. The results obtained by Cebeci (1979) for a Newtonian fluid
(K ¼ 0) when t ¼ 0.5 are also included in Figure 7. The velocity profiles at the
rear stagnation point (x ¼ 1) are shown in Figure 8 for n ¼ 0 and n ¼ 1/2 when
K ¼ 2. We can see that these velocity profiles develop rapidly from rest and as K
increases the boundary layer thickness increases considerably. On the other hand,
we notice that at the forward stagnation point, the microrotation profiles 2g start
at 2gðx ¼ 0; 0; tÞ ¼ 0, for n ¼ 0, while for n ¼ 1/2 these profiles start at
2gðx ¼ 0; 0; tÞ ¼ ð1=2Þ f 00ðx ¼ 0; 0; tÞ, see Figures 9 and 10. For n ¼ 0, 2g profiles
reach at both forward and rear stagnation points, maximum values inside the
boundary layer and then decrease to zero, as we can see in Figures 9 and 11. On
the other hand, Figure 12 shows the profiles of 2g at the rear stagnation point for
n ¼ 1/2 and K ¼ 2. One can see that 2g profiles reach the maximum values at the wall
(h ¼ 0) when t is small. For larger values of t, the maximum values are inside
boundary layer.

Figure 3.
The skin friction

coefficient at x ¼ 1 (rear
stagnation point) for

various values of K when
n ¼ 0 (strong

concentration)0 0.2 0.4 0.6 0.8 1–1
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2

3

4

5

t

Cf
K =  0, 1, 2, 3

(0.49, 0.1929)

Figure 2.
Variation of the wall skin

friction parameter F 00
w with

t at x ¼ 0 (forward
stagnation point) for

various values of K when
n ¼ 1/2 (weak
concentration)0 0.5 1 1.5 2 2.5
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w
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Figure 4.
The skin friction
coefficient at x ¼ 1 (rear
stagnation point) for
various values of K when
n ¼ 1/2 (weak
concentration)
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× Lok et al. (2003b)
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Figure 5.
The velocity profiles at
x ¼ 0 (forward stagnation
point) for various values of
t when K ¼ 0 (Newtonian
fluid)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

f ' 
t = 0.01, 0.04, 0.09, 0.16, 0.25, 0.36, 0.64, 1.00

× Unsteady solution, Lok et al. (2003a)
• Steady solution, Lok et al. (2003a)
– Present

ht1/2

Figure 6.
The velocity profiles at
x ¼ 0 (forward stagnation
point) for various values of
t when K ¼ 2 and n ¼ 0
(strong concentration)
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Figures 13 and 14 show the variation of the microrotation profiles 2g with ht1/2 at
x ¼ 0.5 when K ¼ 2 for n ¼ 0 and n ¼ 1/2. We can see that the microrotation profiles
2g increase with the increase of t. On the other hand, we notice that for n ¼ 0 the
microrotation profiles start at 2gðx ¼ 0:5; 0; tÞ ¼ 0, while for n ¼ 1/2 these profiles
start at 2gðx ¼ 0:5; 0; tÞ ¼ ð1=2Þf 00ðx ¼ 0:5; 0; tÞ, see Figures 13 and 14. For n ¼ 0
these profiles reach maximum values inside the boundary layer and then decrease to
zero. However, the maximum values of 2g profiles are reached at the wall (h ¼ 0) for
n ¼ 1/2, see Figure 14.

Figure 7.
The velocity profile at
x ¼ 1 (rear stagnation

point) for values of t when
K ¼ 0 (Newtonian fluid)
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Figure 8.
The velocity profiles at
x ¼ 1 (rear stagnation

point) when K ¼ 2:
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concentration)
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Variation of the skin friction coefficient Cf, given by equation (31), with the coordinate x
measured along the surface of the cylinder is shown in Figures 15-17 for K ¼ 0
(Newtonian fluid) and K ¼ 2 when n ¼ 0 and n ¼ 1/2. The results obtained by Bar-Lev
and Yang (1975), and Cebeci (1979) for K ¼ 0 are also included in Figure 15. We can see
that a very good agreement between the present results and those obtained by Bar-Lev
and Yang (1975), and Cebeci (1979) exist. Further, it is seen from Figures 15-17 that as
the fluid moves from the forward stagnation point (x ¼ 0) to the rear stagnation point
(x ¼ 1), the value of Cf increases from zero to the maximum value and it decreases back

Figure 9.
Microrotation profiles at
x ¼ 0 (forward stagnation
point) for various values of
t when K ¼ 2 and n ¼ 0
(strong concentration)
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Figure 10.
Microrotation profiles at
x ¼ 0 (forward stagnation
point) for various values of
t when K ¼ 2 and n ¼ 1/2
(weak concentration)
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to zero at the rear stagnation point. This maximum value is higher for smaller values
of t. We also observe from the present study that this maximum value is higher for the
micropolar fluid (K – 0) than that for the Newtonian fluid (K ¼ 0).

Values of the separation time Ts around the cylinder (u ¼ x/a) are shown in Table III
for different values of K. In order to compare the present results for K ¼ 0 (Newtonian
fluid) with those of Bar-Lev and Yang (1975), Katagiri (1976) and Cebeci (1979), we
have taken the time t ¼ 2T. The results are again found in excellent agreement.
We then notice that for K ¼ 0 (Newtonian fluid), the point of separation us first appears

Figure 11.
Microrotation profiles
x ¼ 1 (rear stagnation

point) for various values of
t when K ¼ 2 and n ¼ 0

(strong concentration)
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Figure 12.
Microrotation profiles
x ¼ 1 (rear stagnation

point) for various values of
t when K ¼ 2 and n ¼ 1/2

(weak concentration)
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at the rear stagnation point (x ¼ 1) when Ts ¼ 0.3219, which then spreads to other

points along the cylinder surface as time T increases. The separation occurs at the

lower value of time as the value of K increases. Finally, Figure 18 shows the variation

of the position us of the boundary layer separation along the cylinder surface with Ts

for K ¼ 0 (Newtonian fluid) and K ¼ 2 when n ¼ 0. The results of Cebeci (1979) for

K ¼ 0 are also included in this figure. It is seen again that the present results are in

very good agreement with those obtained by Cebeci (1979).

Figure 13.
Microrotation profiles at
x ¼ 0.5 for various values
of t when K ¼ 2 and n ¼ 0
(strong concentration)
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Figure 14.
Microrotation profiles at
x ¼ 0.5 for various values
of t when K ¼ 2 and
n ¼ 1/2 (weak
concentration)
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Conclusions

The 3D Keller-box method is applied to the problem of unsteady boundary layer flow

past an impulsively started circular cylinder in a micropolar fluid. Numerical solutions

are presented for the time up to the point of separation and good agreement with

published results has been established.

Figure 15.
Variation with x of the
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Figure 16.
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skin friction coefficient
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Figure 17.
Variation with x of the
skin friction coefficient
around the cylinder when
K ¼ 2 and n ¼ 1/2 (weak
concentration) 0 0.2 0.4 0.6 0.8 1
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Author u ¼ 180 166 146 138 124 110

K ¼ 0 (Newtonian fluid)
Cebeci (1979) Ts ¼ 0.320 0.330 0.390 0.436 0.596 1.10
Bar-Lev and Yang (1975) ¼ 0.322 0.330 0.389 0.438 0.602 1.089
Katagiri (1976) ¼ 0.3214 1.0640
Present results for n ¼ 0
K ¼ 0 Ts ¼ 0.3219 0.3327 0.3918 0.4418 0.598 1.0816
K ¼ 0.5 ¼ 0.3149 0.3255 0.3833 0.4283 0.5822 1.0389
K ¼ 1.0 ¼ 0.3048 0.3138 0.3691 0.4123 0.5572 0.9813
K ¼ 1.5 ¼ 0.2965 0.3020 0.3540 0.3944 0.5341 0.9294
K ¼ 2.0 ¼ 0.2855 0.2894 0.3428 0.3771 0.5005 0.8795

Table III.
Values of the separation
time Ts around the
cylinder (u ¼ x/a) for
different values of the
material parameter K

Figure 18.
Variation of the separation
point us with Ts for K ¼ 0
(Newtonian fluid), K ¼ 1
and 2 when n ¼ 0 (strong
concentration) 0.2 0.4 0.6 0.8 1 1.2

110

120
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140
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160
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180
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×    K = 0   Cebeci (1979)
•    K = 0   Present
*   K = 2
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